Standard operating procedures for efficient management of small ruminant farms

- G. Arsenos¹, S. Vouraki^{1,2}, V. Papanikolopoulou¹, A. Argyriadou¹,
- G. Batikas¹, A.M. latrou¹, V. Fotiadou¹, P.D. Carvalho¹, S. Priskas¹

¹Labarotory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, Thessaloniki, Greece

²Department of Agriculture, School of Agriculture, University of Ioannina, Arta, Greece

Background

Dairy Sheep & Goat sector

- Significant livestock sector in EU
- Challenges → limited expertise, management training & innovation adoption
- Status

 low animal productivity, poor animal health & welfare, high production costs, low farm income

Solution

Education of farmers on management practices detailing step-by-step procedures

Objective

To develop farmer-friendly

standard operating procedures (SOPs) for training
employees and recording protocols to cater the needs of
efficient farm management

Materials and Methods

- Existing guidelines
 - Milk production recording and udder morphology assessment \rightarrow ICAR
 - Protocols for animal welfare indicators assessment → AWIN
- Available literature
 - Reproduction technologies
 - Newborn management
 - Nutritional management
 - Milking procedure & milking parlor critical points
 - Biosecurity measures
- Decision support tools
 - Farm economic performance assessment

Reproduction management SOPs

Assessment of males and females

Males

- •BCS → 3-4
- Clinical examination of genitalia
- •Testicular size
 - > 30 cm for rams
 - >25 cm for bucks
- Lameness assessment
- Clinical examination of jaw & teeth

- •BCS \rightarrow 2.5-3.5
- •Age at first mating → 7-8 months

Females

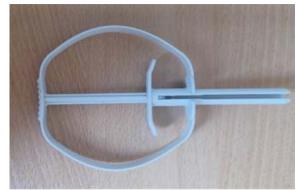
- Lameness assessment
- Clinical examination of jaw & teeth
- •Genetic improvement criteria

Reproduction management SOPs

Artificial insemination

- Selection of the best females
 - Age \rightarrow 1st 3rd lactation period
 - BCS → 2.5-3.5
 - Health
 - Productivity, udder morphology & SCC

- Insemination 50-55 hours after removal of sponges
- Proper animal handling following AI
- Pregnancy diagnosis 30-40 days after AI using ultrasonography


Reproduction management SOPs

Natural mating

- Estrus synchronization → 1 / 10 male to female ratio
- Melatonin implants \rightarrow 1 / 25 male to female ratio
- Flushing
- Pedigree records
- No random mating practices

Newborn management SOPs

Colostrum management

- Individual housing for 2-4 days after lambing/kidding
- Assessment of colostrum quality → Brix refractometer
- Colostrum pasteurization to reduce microbial load
- Storage of high-quality colostrum
- Thawing and warming of colostrum

Activity	Temperature (° C)	Time (min)
Pasteurization	55	80
Thawing	40	45-60
Warming	45	15-30

Brix (%)	Colostrum quality	
<20	Poor	
20-24	Borderline	
25-29	Good	
>30	Very good	

Newborn management SOPs

Artificial rearing

- Smooth transition, observation and assistance of lambs/kids
- Use of high-quality milk replacer
- Provision of a warm and dry environment
- Provision of pelleted concentrate and forage feedstuffs → 1 week old
- Weaning → 35-40 days & 15 kg

Nutritional management SOPs

Mating period & gestation

- •Mating period & 1st month of gestation
 - nutritional management of respective lactation stage
- •2nd 4th month of gestation
 - requirements for maintenance & pregnancy
- •5th month of gestation
 - High energy & protein demands
 - Reduced feed intake
 - Decrease of forage supplementation
 - Increase of concentrate feed provided in many meals/day

Lactation period

- Early stages of lactation
- •High energy & protein demands
 - Lucerne hay/silage → 1.5-2 kg
 - Concentrate feed → 1-1.5 kg
 - Straw \rightarrow 150-200 g

Nutritional management SOPs

Lambs/kids after weaning

- •Weaning 5 months
 - Concentrate feed → ad libitum
 - Lucerne hay \rightarrow 500-600 g
 - Straw → ad libitum
- •5 months first mating
 - Concentrate feed → 500-700 g
 - Lucerne hay \rightarrow 500-600 g
 - Straw → ad libitum

Frequent collection of feed samples and chemical analysis

Males

- •Nutritional requirements mainly for maintenance
- •2 months prior to mating → increase of concentrate feed to 1kg/animal/day
 - Energy demands
 - Semen quality

Milking procedure SOPs

- Use of gloves by milkers
- Use of discrete measures to indicate animals with mastitis → milked separately
- Pre-stripping & observation of milk for signs of mastitis
- Attachment of milking units
- Cluster removal after vacuum cessation
- Post-dipping

Milking parlor critical points

Maintenance

- Vacuum level in the manometer → Daily monitoring
- Vacuum level, pulsation rate, pulsation ration in the milking units \rightarrow Monitoring twice per year
 - Authorized technicians
 - Designated equipment
- Cluster replacement after 2,500-5,000 milkings/milking unit

Milking parlor critical points

Cleaning

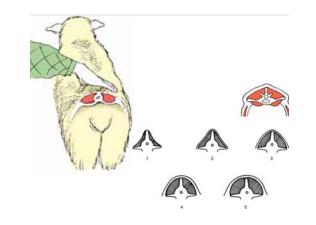
- Externally & internally after every milking
- External → clusters & milking room using high-pressure water
- Internal →
 - Water temperature 70-80°C
 - Alkaline detergents every time to remove milk residues
 - Acid detergents once/week if the water is not hard,
 otherwise 2-3 times/week
 - Cleaning duration 30 90 min

Animal health & welfare SOPs

Vaccination protocols

- Enterotoxemia
 - Ewes/does \rightarrow 1 month prior to parturition
 - Lambs/kids \rightarrow at the age of 3 weeks
- Contagious agalactia
 - Ewes/does → 2 months prior to parturition
 - Lambs/kids \rightarrow at the age of 2 months

- **Enzootic abortion**
 - One month prior to first mating
- Paratuberculosis
 - At the age of 2-3 weeks to 6 months



Animal health & welfare SOPs

Welfare indicators

- BCS
- Water availability
- Fleece cleanliness
- Panting
- Stocking density
- Hoof overgrowth

- Body & skin lesions
- Lameness
- Fecal soiling
- Ocular discharge
- Mastitis

Assessment & scoring according to AWIN guidelines

Biosecurity SOPs

External biosecurity

- Disinfection of vehicles' wheels when entering farm premises
- Use of gloves, clean clothing and footwear by employees and visitors
- Low animal purchasing frequency & number of source herds
- Disinfection of animal transportation vehicles
- Quarantine for at least 3 weeks
- Proper handling of dead animals (gloves, immediate removal, storage & disposal)
- Vermin control with mechanical & chemical measures

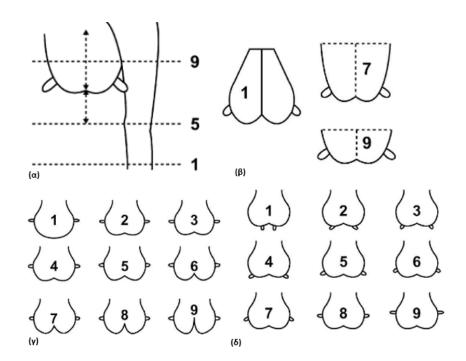
Biosecurity SOPs

Internal biosecurity

- Separate housing of animals of different age groups
- From younger to older animals
- Separation of sick animals → hospital pen
- Record keeping of diagnoses, treatments & deaths
- Frequent evaluation of animal health status
- Efficient cleaning & disinfection

Milk production recording

- Milk yield recording
 - Volumetric milk meters
 - Monthly recording after weaning (suggested for five months)
 - ICAR guidelines
- Milk quality recording
 - Monthly collection of individual milk samples (at least for 3 months in early lactation) from the milk meters
 - Transportation to the laboratory at 4° C
 - Analysis for fat, protein, lactose, SNF content



Udder morphology assessment

- Udder depth
- Udder attachment
- Degree of separation of udder halves
- Teat placement

Assessment & scoring according to ICAR (2018) & Casu et al. (2006)

Nine-point (1-9) linear scale

Farm economic performance assessment

- Decision support tools
- ProudFarm project software
 - Expected daily net income vs feeding costs
 - Input data → daily milk yield and feeding costs
 - Output data → daily net income
- Happy Goats web-based application
 - Annual farm economic performance vs management practices
 - Input data → flock size, production, feeding, grazing, farm prices & costs
 - Output data → annual income, variable costs, gross margin

Conclusions

- Customized SOPs for small ruminant farmers
- Farm management efficiency & sustainability
- Next steps
 - Integration of protocols in an online interactive platform
 - Education of farmers

ACKNOWLEDGEMENTS

This work is funded by Measure 16 Cooperation in the framework of National Rural Development Programme, and it is co-financed by the European fund for rural development (EAFRD) and national budgets (ProudFarm; Project code M16SYN2-00016)

Co-financed by the European Union and Greek national funds

